2,025 research outputs found

    Mapping Exoplanets

    Full text link
    The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to exoplanets makes it impossible to resolve their disk with current or near-term technology. It is still possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times---this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17 pages, including 6 figures and 4 pages of reference

    Exoplanet phase curves: observations and theory

    Full text link
    Phase curves are the best technique to probe the three dimensional structure of exoplanets' atmospheres. In this chapter we first review current exoplanets phase curve observations and the particular challenges they face. We then describe the different physical mechanisms shaping the atmospheric phase curves of highly irradiated tidally locked exoplanets. Finally, we discuss the potential for future missions to further advance our understanding of these new worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been updated with new values for WASP-103b and WASP-18b. Contains a table sumarizing phase curve observation

    Beyond a pale blue dot : how to search for possible bio-signatures on earth-like planets

    Full text link
    The Earth viewed from outside the Solar system would be identified merely like a pale blue dot, as coined by Carl Sagan. In order to detect possible signatures of the presence of life on a second earth among several terrestrial planets discovered in a habit-able zone, one has to develop and establish a methodology to characterize the planet as something beyond a mere pale blue dot. We pay particular attention to the periodic change of the color of the dot according to the rotation of the planet. Because of the large-scale inhomogeneous distribution of the planetary surface, the reflected light of the dot comprises different color components corresponding to land, ocean, ice, and cloud that cover the surface of the planet. If we decompose the color of the dot into several principle components, in turn, one can identify the presence of the different surface components. Furthermore, the vegetation on the earth is known to share a remarkable reflection signature; the reflection becomes significantly enhanced at wave-lengths longer than 760nm, which is known as a red-edge of the vegetation. If one can identify the corresponding color signature in a pale blue dot, it can be used as a unique probe of the presence of life. I will describe the feasibility of the methodology for future space missions, and consider the direction towards astrobiology from an astrophysicist's point of view.Comment: 11 pages, 5 figures, published in Yamagishi A., Kakegawa T., Usui T. (eds) Astrobiology. Springer, Singapore (2019

    Exoplanets and SETI

    Full text link
    The discovery of exoplanets has both focused and expanded the search for extraterrestrial intelligence. The consideration of Earth as an exoplanet, the knowledge of the orbital parameters of individual exoplanets, and our new understanding of the prevalence of exoplanets throughout the galaxy have all altered the search strategies of communication SETI efforts, by inspiring new "Schelling points" (i.e. optimal search strategies for beacons). Future efforts to characterize individual planets photometrically and spectroscopically, with imaging and via transit, will also allow for searches for a variety of technosignatures on their surfaces, in their atmospheres, and in orbit around them. In the near-term, searches for new planetary systems might even turn up free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor additions and modification

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    A map of the large day-night temperature gradient of a super-Earth exoplanet.

    Get PDF
    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface

    Search for time-dependent B0s - B0s-bar oscillations using a vertex charge dipole technique

    Get PDF
    We report a search for B0s - B0s-bar oscillations using a sample of 400,000 hadronic Z0 decays collected by the SLD experiment. The analysis takes advantage of the electron beam polarization as well as information from the hemisphere opposite that of the reconstructed B decay to tag the B production flavor. The excellent resolution provided by the pixel CCD vertex detector is exploited to cleanly reconstruct both B and cascade D decay vertices, and tag the B decay flavor from the charge difference between them. We exclude the following values of the B0s - B0s-bar oscillation frequency: Delta m_s < 4.9 ps-1 and 7.9 < Delta m_s < 10.3 ps-1 at the 95% confidence level.Comment: 18 pages, 3 figures, replaced by version accepted for publication in Phys.Rev.D; results differ slightly from first versio

    Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaginal candidiasis is a frequent and common distressing disease affecting up to 75% of the women of fertile age; most of these women have recurrent episodes. Essential oils from aromatic plants have been shown to have antimicrobial and antifungal activities. This study was aimed at assessing the anti-fungal activity of essential oil from <it>Mentha suaveolens </it>(EOMS) in an experimental infection of vaginal candidiasis.</p> <p>Methods</p> <p>The <it>in vitro </it>and <it>in vivo </it>activity of EOMS was assessed. The <it>in vitro </it>activity was evaluated under standard CLSI methods, and the <it>in vivo </it>analysis was carried out by exploiting a novel, non-invasive model of vaginal candidiasis in mice based on an <it>in vivo </it>imaging technique.</p> <p>Differences between essential oil treated and saline treated mice were evaluated by the non-parametric Mann-Whitney U-test. Viable count data from a time kill assay and yeast and hyphae survival test were compared using the Student's t-test (two-tailed).</p> <p>Results</p> <p>Our main findings were: i) EOMS shows potent candidastatic and candidacidal activity in an <it>in vitro </it>experimental system; ii) EOMS gives a degree of protection against vaginal candidiasis in an <it>in vivo </it>experimental system.</p> <p>Conclusions</p> <p>This study shows for the first time that the essential oil of a Moroccan plant <it>Mentha suaveolens </it>is candidastatic and candidacidal <it>in vitro</it>, and has a degree of anticandidal activity in a model of vaginal infection, as demonstrated in an <it>in vivo </it>monitoring imaging system. We conclude that our findings lay the ground for further, more extensive investigations to identify the active EOMS component(s), promising in the therapeutically problematic setting of chronic vaginal candidiasis in humans.</p

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Evidence for an excess of B -> D(*) Tau Nu decays

    Get PDF
    Based on the full BaBar data sample, we report improved measurements of the ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or mu. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) = 0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, our results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the format of Figure 2 and included the effect of the change of the Tau polarization due to the charged Higg
    • …
    corecore